
Window functions are defined by the SQL Standard. They are functions that apply to sets of rows

(windows) defined by an OVER clause. Each window is used to calculate a single value for output to the

current row. In a sense, window functions are like correlated subqueries in that their output applies

only to the row for which they are calculated.

The OVER clause provides the specification for the exact window (set of rows) that relates to the row

being calculated and has three elements: partitioning, ordering and framing. An independent window

exists for each row in the set.

There are four types of window functions:

 Aggregate: SUM, AVG, etc – these have partially supported window functionality since SQL

Server 2005 and can be used as either Grouped or Window functions.

 Ranking: ROW_NUMBER, NILE, RANK, DENSE_RANK – a partial implementation of

ROW_NUMBER has existed since SQL Server 2005 and was fully implemented in 2012

 Distribution: PERCENT_RANK, CUME_DIST are rank distributions, PERCENTILE_CONT,

PERCENTILE_DISC are inverse distributions and only partially implemented in SQL Server 2012

 Offset: LAG, LEAD, FIRST_VALUE, LAST_VALUE. The standard also defines NTH_VALUE, which

wasn’t implemented in 2012.

The purpose of this presentation is to introduce using the aggregate functions, ROW_NUMBER, and the

Offset functions.

Grouped functions are those we’re all used to using:

SELECT col1, sum(col2), avg(col3), max(col4)

FROM table1

GROUP BY col1

The GROUP must apply to all the calculations in the SELECT statement.

A Window function uses the OVER clause to direct the function whether to use the entire ouput (an

empty OVER clause) or filter it (PARTITION BY), whether to order the rows thus used (ORDER BY) and

whether to frame the rows used (ROWS/RANGE). Window functions require either an empty OVER

clause or a PARTITION BY, GROUP BY and ROWS/RANGE cannot be used by themselves.

Examples:

SELECT col1, SUM(col2) OVER()

FROM table1

This returns the total of col2 along with every value in col1. There is no grouping. Useful when you

want to perform a calculation or comparison of col1 values against the total.

SELECT col1, SUM(col2) OVER(PARTITION BY col1)

FROM table 1

This returns the sum of col2 values grouped by col1. Note the compact syntax. Not only is it short, it

allows you to do other things in the query without worrying about whether they affect a GROUP BY

clause.

Window functions are supported in the SELECT and ORDER BY clauses only, not in WHERE or HAVING

clauses. This is because the input of the function is the result of the query after all table operations

(JOINS), filters (WHERE, HAVING), grouping (GROUP BY), etc. Keep in mind that the conceptual

evaluation of a SQL query takes place in the following order:

1. FROM/JOIN ON

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

6. ORDER BY

Within each step, all operations take place in an all-at-once fashion. This is why filters against LEFT

JOINED tables should be placed in the ON operation, the WHERE, GROUP BY and HAVING clauses don’t

have access to column aliases defined in the SELECT clause, etc.

Group aggregates are available to the HAVING and later steps and window aggregates are available to

SELECT and ORDER BY.

The entire output of the query (steps 1-4) is the input for the window function(s) in the SELECT and

ORDER BY clauses. Partitioning inside the OVER clause subdivides the window into smaller windows or

panes. Ordering takes place within the partition scheme. Framing allows you to operate on the data

within the partition, further limiting the scope of the output.

SIDEBAR:

Grouped aggregates operate on the output of the query after the GROUP BY clause (remember the

order of processing) and return one value per group as defined in the GROUP BY.

Window aggregates operate on the output of the query after the HAVING clause and return one value

for each row of data, filtered via the OVER clause.

This makes for some interesting code because you can have both kinds of function in the same query

and you can even embed grouped functions inside aggregate functions.

SELECT empid

 ,SUM(val) AS empval

 ,SUM(val)/SUM(SUM(val)) OVER() * 100 AS pct

FROM Sales.Ordervalues

GROUP BY empid;

All the SUM(val) functions are standard grouped aggregates and return the same value. SUM(SUM(val))

OVER() gets the sum of the grouped aggregate values. But wait!, you say with an optional smirk, why

didn’t you just use SUM(val) OVER() to get the total of the val column? In a query having only window

functions that would work but if you try it in a query that mixes grouped and window functions, you get

an error.

Attempting to run

SELECT empid

 ,SUM(val) AS empval

 ,SUM(val)/SUM(val) OVER() * 100 AS pct

FROM Sales.Ordervalues

GROUP BY empid;

returns the error Column ‘Sales.Ordervalues’ is invalid in the select list because it is not containined in

either an aggregate function or the GROUP BY clause.

Say what?, you say.

Because the third reference to val is in a window function rather than in a grouped function, whatever

column or value it operates on must be able to stand alone in the query.

This query works, but is absurd

SELECT empid

 ,SUM(val) AS empval

 ,SUM(val)/val * 100 AS pct

FROM Sales.Ordervalues

GROUP BY empid,val;

Remember that by the time you get to the SELECT the data has already been grouped and you must use

whatever is in that ouput. That means to get the grand total, you have to sum the group totals. You no

longer have access to the detail.

Using a grouped function inside a window function saves you from creating a derived table to get the

total.

BACK TO OUR REGULARLY SCHEDULED PROGRAMMING:

The OVER clause consists of three elements – partitioning, ordering, and framing.

PARTITION BY is supported by all window functions but isn’t required in 2012. Within the function, it

restricts the window\rows of the current calculation to those rows that have the partitioning value. If

no PARTITION BY is specified, the entire output of the query is the input of the calculation.

ORDER BY defines the order of the data for calculation purposes, if relevant. In functions like RANK and

ROW_NUMBER, using ORDER BY directly affects the output. The output will be deterministic to the

degree that the ordering guarantees that the same input will be evaluated the same way every time the

query is executed. In functions like SUM, ORDER BY doesn’t affect the calculation itself but it does affect

the input by providing context for any framing options used.

ROWS and RANGE are framing options that act like a filter for the input. They are used in aggregate

functions (SUM, AVG, etc) and in the FIRST_VALUE and LAST_VALUE offset functions. Framing options

define the start and\or end points of the frame in relation to the row being calculated.

We’ll take a moment to go through this because the concept isn’t intuitive to those of us who have been

working with SQL Server for a while.

The output of the query (through the HAVING clause) is the input for the window function. It is the

window of data the function will examine.

Within the window function’s OVER clause, there may be a PARTITION BY operation that creates a sub-

window within the data. This sub-window acts like a frame within the outer window, kind of like the

pane dividers in a physical window. The ordering of the rows within the frame is critical for framing to

be deterministic.

Within the frame, you may need to limit the rows the window function will use for its calculation. For

example, the frame may contain 100 rows but perhaps you want to perform your calculation only on a

subset – perhaps you want to sum the last seven days’ worth of sales relative to the row where the

calculation is being performed. Using framing options allows you to restrict the rows being used.

The ROWS framing option lets you be very specific and granular regarding the number and location of

the rows to be used relative to the current row. RANGE is more dynamic, using a relative distance

between the current row and the row(s) you want to include in the function. Don’t worry, we’ll see

examples that will help clarify with all that means. Just remember that once the data within the

partition is ordered, framing filters it.

The syntax for a windows function goes like this:

Function_name (column_name)

 OVER ([partitioning clause]

 [ordering clause

 [framing clause]])

The framing clause has 3 elements: <frame units> <frame extent>. The SQL standard includes an

optional <frame exclusion> element but SQL Server 2012 doesn’t support it.

Frame units are ROWS or RANGE. The syntax for the framing clause is:

ROWS\RANGE BETWEEN lower boundary

 AND upper boundary

Note that the upper boundary is optional. If no upper boundary is specified, the upper boundary

defaults to the row being calculated. You can set the window frame with both upper and lower

boundaries or with either upper or lower boundaries. The boundaries don’t have to include the current

row.

That may sound insane but if you want to compare one day’s sales to, say, the average of the previous

seven days’ sales, you don’t want to include current day. Your boundary, in English, is “between day-1

and day-8.” If you want to compare one day’s sales with sales for following next seven days, your

boundary, in English, is “between day+1 and day+8.”

The simplest framing syntax to include all the rows in the partition, is:

ROWS BETWEEN UNBOUNDED PRECEDING

 AND UNBOUNDED FOLLOWING

This captures all the rows in the partition, whether they come before or after the row being calculated

(current row). This would be useful for calculating something like a daily percentage of sales against all

the sales in the query period.

UNBOUNDED means no limit. UNBOUNDED PRECEDING gets all the rows from the start of the frame to

the row being processed (current row). UNBOUNDED FOLLOWING gets all the rows from the first row

after the current row to the end of the data in the frame.

To get all rows prior to and including the row being calculated (current row):

ROWS BETWEEN UNBOUNDED PRECEDING

 AND CURRENT ROW

Something like this would be useful for a running total.

If you only want a certain number of rows prior to current row, use:

ROWS BETWEEN n PRECEDING

 AND CURRENT ROW

Where n is any integer value. If there are fewer than n rows prededing the current row, only the rows

that exist will be used. If current row is the first row, the result will be NULL.

If you only want a certain number of rows prior to but not including current row, use:

ROWS BETWEEN n PRECEDING

 AND n PRECEDING

Do you see that the first element (the BETWEEN element) is always going to be the lowest value you

want to get and the second (AND) is the highest? It works just like BETWEEN in a WHERE clause. You

always say BETWEEN 1 AND 10, never 10 AND 1.

What if you want to include rows that come after the current row based on the current order?

ROWS BETWEEN n PRECEDING

 AND n FOLLOWING

This will get you the n rows before and n rows after current row and include current row.

ROWS BETWEEN n FOLLOWING

 AND n FOLLOWING

Will get you a set of rows after but not including current row.

ROWS BETWEEN CURRENT ROW

 AND n FOLLOWING

Will get you a set of rows that begins with the current row and ends with that row number +n.

ROWS BETWEEN CURRENT ROW

 AND UNBOUNDED FOLLOWING

Will get you all rows beginning with current row until the end of the result set.

Note that ROWS\RANGE UNBOUNDED PRECEDING is shorthand for ROWS\RANGE BETWEEN

UNBOUNDED PRECEDING AND CURRENT ROW. Current row is assumed as the upper boundary. This

framing extent is the default so doesn’t need to be included at all in the query.

SELECT custid

,sum(totalorder) OVER(PARTITION BY custid GROUP BY orderdate) as RunningTotal

FROM Orders.Orders;

is exactly the same as

SELECT custid

,sum(totalorder) OVER(PARTITION BY custid GROUP BY orderdate

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as RunningTotal

FROM Orders.Orders;

There is no shorthand for FOLLOWING.

If the combination of PARTITION BY and ORDER BY is unique, the ROWS result will be deterministic,

meaning that given the same input the result will be exactly the same every time. This is important for

functions like ROW_NUMBER and RANK.

When starting with PRECEDING or using BETWEEN CURRENT ROW AND n FOLLOWING, the order of

the rows processed is smallest to largest based on the ORDER BY column.

When using BETWEEN CURRENT ROW AND UNBOUND FOLLOWING,

In SQL Server 2012 RANGE implements UNBOUNDED PRECEDING and FOLLOWING and CURRENT ROW

only. As with ROWS, if you don’t indicate an upper bound, CURRENT ROW is assumed, so RANGE

UNBOUNDED PRECEDING and RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW mean

the same thing.

One huge difference between ROWS and RANGE is the way the function behaves if the ORDER BY clause

doesn’t result in uniqueness. With ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,

each row is treated as a distinct entity even if it is not unique and the function performs its work ending

at the current row even if there are ties after it.

With RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW non-unique rows (ties) are all

included in the calculation for each of the tying rows, even if they come after the current row. As long

as there are no ties, ROWS and RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW behave

the same.

Example:

Given the data in TableA (shaded below), execute the following –

SELECT KeyCol, Col1,

 COUNT(*) OVER(ORDER BY col1

 ROWS BETWEEN UNBOUNDED PREDEDING

 AND CURRENT ROW) AS Row_Count

FROM TableA;

SELECT KeyCol, Col1,

 COUNT(*) OVER(ORDER BY col1

 RANGE BETWEEN UNBOUNDED PREDEDING

 AND CURRENT ROW) AS Range_Count

FROM TableA;

TableA Results

KeyCol Col1 ROWS_Count RANGE_Count

2 A 1 2

3 A 2 2

5 B 3 5

7 B 4 5

11 B 5 5

13 C 6 9

17 C 7 9

19 C 8 9

23 C 9 9

For ROWS, the calculation started with the CURRENT ROW and counted all rows above it.

RANGE started with the last row having the value in Col1 and counted all rows above it. For RANGE,

CURRENT ROW means current ordering value. Be certain you understand this behavior and take it into

account when using RANGE. It can be useful is handled properly.

OFFSET FUNCTIONS

Offset functions return a value whose location is relative to the specified frame of data the function is

using. The frame is defined by the OVER clause.

The offset functions are LAG, LEAD, FIRST_VALUE, LAST_VALUE.

LAG and LEAD return a value from a row offset from the current row by a specified value. Both support

partitioning, ordering and framing. The default offset is 1 but you can override that. You can also

provide a default value if there is no row in the frame at the offset value.

Syntax:

LAG/LEAD (col1 [,offset] [,default])

 OVER ([PARTITION BY] ORDER BY [ROWS/RANGE])

LAG returns a row earlier in the dataset than current row. LEAD returns a row later in the dataset. This

is a little counter-intuitive so think of it like this: a row either lags behind current row in the order of the

dataset or it leads ahead of it.

FIRST_VALUE and LAST_VALUE return the first (earliest) and last (latest) values in the frame as it is

defined by the combination of partitioning, ordering and framing. If no framing is specified,

FIRST_VALUE uses RANGE BETWEEN PRECEDING AND CURRENT ROW. Without framing, LAST_VALUE

always returns the value of the current row.

